Современная война стремительна и быстротечна. Зачастую победителем в боевом столкновении выходит тот, кто первым сумеет обнаружить потенциальную угрозу и адекватно на нее среагировать. Уже более семидесяти лет для поиска противника на суше, море и в воздухе используется метод радиолокации, основанный на излучении радиоволн и регистрации их отражений от различных объектов. Устройства, посылающие и принимающие подобные сигналы, называются радиолокационными станциями (РЛС) или радарами.
Термин «радар» — это английская аббревиатура (radio detection and ranging), которая была запущена в оборот в 1941 году, но давно уже стала самостоятельным словом и вошла в большинство языков мира.
Изобретение радара – это, безусловно, знаковое событие. Современный мир трудно представить без радиолокационных станций. Их используют в авиации, в морских перевозках, с помощью РЛС предсказывается погода, выявляются нарушители правил дорожного движения, производится сканирование земной поверхности. Радиолокационные комплексы (РЛК) нашли свое применение в космической промышленности и в системах навигации.
Однако наиболее широкое применение радары нашли в военном деле. Следует сказать, что эта технология изначально создавалась для военных нужд и дошла до стадии практической реализации перед самым началом Второй мировой войны. Все крупнейшие страны-участницы этого конфликта активно (и не без результата) использовали радиолокационные станции для разведки и обнаружения судов и самолетов противника. Можно уверенно утверждать, что применение радаров решило исход нескольких знаковых сражений как в Европе, так и на Тихоокеанском театре боевых действий.
Сегодня РЛС используются для решения чрезвычайно широкого спектра военных задач, от отслеживания запуска межконтинентальных баллистических ракет до артиллерийской разведки. Каждый самолет, вертолет, военный корабль имеет собственный радиолокационный комплекс. Радары являются основой системы противовоздушной обороны. Новейший радиолокационный комплекс с фазированной антенной решеткой будет установлен на перспективный российский танк «Армата». Вообще же, многообразие современных радаров поражает. Это абсолютно разные устройства, которые отличаются размерами, характеристиками и назначением.
С уверенностью можно заявить, что сегодня Россия является одним из признанных мировых лидеров в области разработки и производства РЛС. Однако прежде чем говорить о тенденциях развития радиолокационных комплексов, следует сказать несколько слов о принципах работы радаров, а также об истории радиолокационных систем.
Как работает радиолокатор
Локацией называют способ (или процесс) определения месторасположения чего-либо. Соответственно, радиолокация – это метод обнаружения предмета или объекта в пространстве при помощи радиоволн, которые излучает и принимает устройство под название радиолокатор или РЛС.
Физический принцип работы первичного или пассивного радара довольно прост: он передает в пространство радиоволны, которые отражаются от окружающих предметов и возвращаются к нему в виде отраженных сигналов. Анализируя их, радар способен обнаружить объект в определенной точке пространства, а также показать его основные характеристики: скорость, высоту, размер. Любая РЛС – это сложное радиотехническое устройство, состоящее из многих компонентов.
В состав любого радара входит три основных элемента: передатчик сигнала, антенна и приёмник. Все радиолокационные станции можно разделить на две большие группы:
- импульсные;
- непрерывного действия.
Передатчик импульсной РЛС испускает электромагнитные волны в течение краткого промежутка времени (доли секунды), следующий сигнал посылается только после того, как первый импульс вернется обратно и попадет в приемник. Частота повторения импульса – одна из важнейших характеристик РЛС. Радиолокаторы низкой частоты посылают несколько сотен импульсов в минуту.
Антенна импульсного радара работает и на прием, и на передачу. После испускания сигнала передатчик отключается на время и включается приёмник. После его приема происходит обратный процесс.
Импульсные РЛС имеют как недостатки, так и преимущества. Они могут определять дальность сразу нескольких целей, подобный радар вполне может обходиться одной антенной, индикаторы подобных устройств отличаются простотой. Однако при этом сигнал, испускаемый подобным РЛС должен иметь довольно большую мощность. Также можно добавить, что все современные радары сопровождения выполнены по импульсной схеме.
В импульсных радиолокационных станциях в качестве источника сигнала обычно используют магнетроны, или лампы бегущей волны.
Антенна РЛС фокусирует электромагнитный сигнал и направляет его, улавливает отраженный импульс и передает его в приемник. Существуют радиолокаторы, в которых прием и передача сигнала производятся разными антеннами, причем они могут находиться друг от друга на значительном расстоянии. Антенна РЛС способна испускать электромагнитные волны по кругу или работать в определенном секторе. Луч радара может быть направлен по спирали или иметь форму конуса. Если нужно, РЛС может следить за движущейся целью, постоянно направляя на нее антенну с помощью специальных систем.
В функции приемника входит обработка полученной информации и передача ее на экран, с которого она считывается оператором.
Кроме импульсных РЛС, существуют и радары непрерывного действия, которые постоянно испускают электромагнитные волны. Такие радиолокационные станции в своей работе используют эффект Доплера. Он заключается в том, что частота электромагнитной волны, отраженной от объекта, который приближается к источнику сигнала, будет выше, чем от удаляющегося объекта. При этом частота испускаемого импульса остается неизменной. Радиолокаторы подобного типа не фиксируют неподвижные объекты, их приемник улавливает лишь волны с частотой выше или ниже испускаемой.
Типичным доплеровским радиолокатором является радар, который используют сотрудники дорожной полиции для определения скорости автомобилей.
Основной проблемой радаров непрерывного действия является невозможность с их помощью определять расстояние до объекта, зато при их работе не возникает помех от неподвижных предметов между РЛС и целью или за ней. Кроме того, доплеровские радары – это довольно простые устройства, которым для работы достаточно сигналов малой мощности. Также нужно отметить, что современные радиолокационные станции с непрерывным излучением имеют возможность определять расстояние до объекта. Для этого используется изменение частоты РЛС во время работы.
Одной из главных проблем в работе импульсных РЛС являются помехи, которые идут от неподвижных объектов — как правило, это земная поверхность, горы, холмы. При работе бортовых импульсных радаров самолетов все объекты, находящиеся ниже, «затеняются» сигналом, отраженным от земной поверхности. Если говорить о наземных или судовых радиолокационных комплексах, то для них эта проблема проявляется в обнаружении целей, летящих на малых высотах. Чтобы устранить подобные помехи используется все тот же эффект Доплера.
Кроме первичных РЛС, существуют и так называемые вторичные радиолокаторы, которые используются в авиации для опознания воздушных судов. В состав таких радиолокационных комплексов, кроме передатчика, антенны и приемного устройства, входит еще и самолетный ответчик. При облучении его электромагнитным сигналом ответчик выдает дополнительную информацию о высоте, маршруте, номере борта, его государственной принадлежности.
Также радиолокационные станции можно разделить по длине и частоте волны, на которой они работают. Например, для исследования поверхности Земли, а также для работы на значительных дистанциях используются волны 0,9—6 м (частота 50—330 МГц) и 0,3—1 м (частота 300—1000 МГц). Для управления воздушным движением применяется РЛС с длиной волны 7,5—15 см, а загоризонтные радары станций обнаружения ракетных пусков работают на волнах с длиной от 10 до 100 метров.
История радиолокации
Идея радиолокации возникла практически сразу после открытия радиоволн. В 1905 году сотрудник немецкой компании Siemens Кристиан Хюльсмейер создал устройство, которое с помощью радиоволн могло обнаружить крупные металлические объекты. Изобретатель предлагал устанавливать его на кораблях, чтобы они могли избегать столкновений в условиях плохой видимости. Однако судовые компании не заинтересовались новым прибором.
Проводились эксперименты с радиолокацией и в России. Еще в конце XIX века русский ученый Попов обнаружил, что металлические объекты препятствуют распространению радиоволн.
В начале 20-х годов американские инженеры Альберт Тейлор и Лeo Янг сумели с помощью радиоволн засечь проплывающее судно. Однако состояние радиотехнической промышленности того времени было таково, что создать промышленные образцы радиолокационных станций было затруднительно.
Первые радиолокационные станции, которые можно было использовать для решения практических задач, появились в Англии примерно в середине 30-х годов. Эти устройства были очень большими, устанавливать их можно было только на суше или на палубе больших кораблей. Только в 1937 году был создан прототип миниатюрной РЛС, которую можно было установить на самолет. К началу Второй мировой войны англичане имели развернутую цепь радиолокационных станций под названием Chain Home.
Занимались новым перспективным направлением и в Германии. Причем, нужно сказать, небезуспешно. Уже в 1935 году главнокомандующему германского флота Редеру был продемонстрирован действующий радиолокатор с электронно-лучевым дисплеем. Позже на его основе были созданы серийные образцы РЛС: Seetakt для военно-морских сил и Freya для ПВО. В 1940 году в немецкую армию стала поступать система радиолокационная управления огнем Würzburg.
Однако несмотря на очевидные достижения германских ученых и инженеров в области радиолокации, немецкая армия начала использовать радиолокаторы позже англичан. Гитлер и верхушка Рейха считали радары исключительно оборонительным оружием, которое не слишком нужно победоносной немецкой армии. Именно по этой причине к началу битвы за Британию у немцев было развернуто только восемь радиолокационных станции Freya, хотя по своим характеристикам они как минимум не уступали английским аналогам. В целом же можно сказать, что именно успешное использование радаров во многом определило исход битвы за Британию и последующее противостояние между Люфтваффе и ВВС союзников в небе Европы.
Позже немцы на основе системы Würzburg создали рубеж ПВО, который получил название «линии Каммхубера». Используя подразделения специального назначения, союзники сумели разгадать секреты работы немецких радаров, что позволило эффективно глушить их.
Несмотря на то, что англичане вступили в «радарную» гонку позже американцев и немцев, на финише они сумели обогнать их и подойти к началу Второй мировой войны с самой продвинутой системой радиолокационного обнаружения самолетов.
Уже в сентябре 1935 года англичане приступили к постройке сети радиолокационных станций, в состав которой перед войной уже входили двадцать РЛС. Она полностью перекрывала подлет к Британским островам со стороны европейского побережья. Летом 1940 года британскими инженерами был создан резонансный магнетрон, позже ставший основой бортовых радиолокационных станций, устанавливаемых на американских и британских самолетах.
Работы в области военной радиолокации велись и в Советском Союзе. Первые успешные эксперименты по обнаружению самолетов с помощью радиолокационных станций в СССР были проведены еще в середине 30-х годов. В 1939 году на вооружение РККА была принята первая РЛС РУС-1, а в 1940 году – РУС-2. Обе эти станции были запущены в серийное производство.
Вторая мировая война наглядно показала высокую эффективность использования радиолокационных станций. Поэтому после ее окончания разработка новых РЛС стала одним из приоритетных направлений развития военной техники. Бортовые радиолокаторы со временем получили все без исключения военные самолеты и корабли, РЛС стали основой для систем противовоздушной обороны.
В период Холодной войны у США и СССР появилось новое разрушительное оружие – межконтинентальные баллистические ракеты. Обнаружение запуска этих ракет стало вопросом жизни и смерти. Советский ученый Николай Кабанов предложил идею использования коротких радиоволн для обнаружения самолетов противника на больших расстояниях (до 3 тыс. км). Она была довольно проста: Кабанов выяснил, что радиоволны длиной 10-100 метров способны отражаться от ионосферы, и облучая цели на поверхности земли, возвращаться тем же путем к РЛС.
Позже на основе этой идеи были разработаны радиолокаторы загоризонтного обнаружения запуска баллистических ракет. Примером таких РЛС может служить «Дарьял» — радиолокационная станция, которая несколько десятилетий была основой советской системы предупреждения о ракетных пусках.
В настоящее время одним из самых перспективных направлений развития радиолокационной техники считается создание РЛС с фазированной антенной решеткой (ФАР). Подобные радары имеют не один, а сотни излучателей радиоволн, работой которых руководит мощный компьютер. Радиоволны, испускаемые разными источниками в ФАР, могут усиливать друг друга, если они совпадают по фазе, или же, наоборот, ослаблять.
Сигналу РЛС с фазированной решеткой можно придавать любую необходимую форму, его можно перемещать в пространстве без изменения положения самой антенны, работать с разными частотами излучения. РЛС с фазированной решеткой гораздо надежней и чувствительней, чем радиолокатор с обычной антенной. Однако у подобных радаров есть и недостатки: большой проблемой является охлаждение РЛС с ФАР, кроме того, они сложны в производстве и дорого стоят.
Новые радиолокационные станции с фазированной решеткой устанавливаются на истребители пятого поколения. Эта технология используется в американской системе раннего предупреждения о ракетном нападении. Радиолокационный комплекс с ФАР будет установлен на новейший российский танк «Армата». Следует отметить, что Россия является одним из мировых лидеров в разработке радиолокаторов с ФАР.
Источник: militaryarms.ru